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ITERATED LIMITS AND THE CENTRAL LIMIT THEOREM 

FOR DEPENDENT VARIABLES.1 

by 
George Marsaglia 

University of North Carolina 

1. Introduction. Section 2 of this paper gives some results on 

iterated limitB which may he considered generalizations of well-known 

results £~1,  p. 25^_7« Section 3 applies these results to give easy 

proofs of some central limit, theorems for m-dependent variables. 

2. Iterated Probability Limits. Here, we use the strong sense 

for constants a. , i, ,) = 1, 2, ..., 

lim lim a. = a means 
J  i   J 

(l)          lim  '  lim    | a  - a | j = 0. 
i   >oo\ i >oo    °    j 

We note that (l) holds if, and only if, for each € > 0 there exist 

integers M, N , N2, ... such that if the pair (i,.j) satisfies J > M, 

i> N , then \a...  - a| < e. 

DEFINITION 1. Let f, f.., I, J « 1, 2, ... be random variables. 
—J 

Then 

plim plim f  = f 
i        i  1J 

means, for every e > 0, 

lim lim P(|f  - f| > e) = 0 
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THEOREM 1. Let h , g , i, j - 1, 2, ... be random variables. 

Let G be a function such that at each of its continuity pointb x 

lim lim P(g  < x) = G(x), 
J  i    J ~ 

and suppose 

plim plim h.. = 0, 
j   i   ° 

Then 

lim lim P(g, . + h , < x) = G(x) 
4      4 *-0 *J  "" 4 

Let e = 8d > 0 and a continuity point x of G be given. We shall 

exhibit integers M, N , N?> ... such that 

(?) \Hz, . + h  < x) - G(x) j < e 
j-.i   *«j 

if j > M and i > N . First, choose P BO that G is continuous at x + P, 

at x - P, and so that 

(3) |GU + P) - G(x - P)i < S. 

Then choose M, K  , N?,   ...  so that,  simultaneoualy, 

W p(lh1J!>p)<S 

(5) |P(g1(j < x)  - G(x)| < a 

(6) |P(6±J < x - p)  - G(x - p)J <d 

(7) ;P(6tJ < x +  P)   - G(x + P) | < d 
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whenever (i,j) satisfies J > M and i > N  .    Then fox  such a pair (i,j), 

let F(x)  = p(gjLJ + h1J < x), H(x,p) = P(SiJ + h±i < x,   jh^ [ < (3), 

L(x,p)  = P(g      < x,    |h     | < P) and Q(x)  * P(g      < x).    We have 

|P(x)-G(x) ! <   |F(X)-H(X,0) !* |H(x,p)-L(x,P5 K |L(x,p)-Q(x) j+ I*(x)-G(x) |. 

Kov hy (k)  and (5), each of the terms on the right except the second 

is hounded by &, and since L(x-P,P) < H(x,0) < L(x+P,p) and 

L(x-P,p) <L(x,P) <L(x+p,0), 

|H(x.6) - L(x,P) | < !L(x+6,p) - L(x-p,P) | < 55 

by W,   (7)i (3) and (6), since 

|L(x+p,p)-L(x-P,p) I < |L(x+p,P)-Q(x+p)> |Q(x+p)-G(x+P)|+ !G(X+0)-G(X-P) J 

+ |G(x-p)-Q(x-p)h |Q(x-P)-L(x-P,p)I 

Hence (p(x)-G(x) | < 86 • €, which is condition (2). 

THEOREM 2. Undev the conditions of Theorem 1, if there exiBt 

constants a  such that lia lim a. . « a > 0, and if G is continuous 
3 J  i   J 

at x/e.  then lim lim P(a g  < x) = G(x/a). 
i      i    1J 1J 

Using the artifice, for suitable i, J, 7, 

l^u < £? - G® I < lp^ij < r;) - p<*ij < f) I • |p(giJ < f). o(|) 1 

i^ij < ij;> - p<«ij < !> I < !pWj < arr} - F(5u S i&! > 

thv. procf is routine. The details are omitted. 



5. Applications to partitioned sequences of m-dependent random 

variables. Let x,, x~}   ... be an m-dependent sequence of random varl»bl< 

with zero means. For each pair (n, k) with 2m < k < n, dsfine 

yi = xik-k+l +   •*-+ xik-m lul> 2'   •'• 

61 
2 

gnk=      L     yi' tnk=E(gnk) 

82 = E(x1+   ... + x/,    h^ - J- (£ xt - gnk)       . 
n    1 

Since we shall be dealing with 11m lim relations, g . , n < k, may be 
k  n 

defined indifferently. 

According to Theorems 1 and 2, if 

t r 
ft 

k  n wn 
(8) lim lira — = 1 

(9) plim pllm h  = 0 
k   n 

• X     - -rt 
g (2" 

(10) 11m lim F(~ < x) = —   \   e     dt 
nk      'St -oo 

then 



x     12 
xl+'"xn  _.,   1     f    "a* 

8 
n      n 

5 < ^ = _i_    r (11) lifl. P(-i 2  <x)=_±_    I   e  
c   dt 

/s   J 

The following theorems give condition*, which imply (8), (9), and (10). 

THEOREM 3. If thore exist constants a > 2, B > 0 such that 

U2) \    <   B, B-l,  2,   ... 
s n 

(13) E(x*) <B, u = 1,  2,   ... 

\l/a 

JKftP 
(1U) lte\i £—        -    0 

n n 

then condition (ll) holds. 

We first establish (8) and (9). One readily finds, for 

2m < k < n, 

(15) \sl- t*jt\<   ([f ]+ fc2)^   . 

and 

(16) E(h2 )<   1      (    n   |+  k2)&.2B       # 

•  a _    a 
n 

But, using (12), 

&:* <a     &i 
(17) lim 11m ~ 5 =    lh Jim   -^-g     = lim (~ lim ^) = 0. 

k      n s kns s n n n 
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Relations (15), (16) and u7) imply (8) and (9). 

Condition (10) vill be true, by Liapounoff's Theorem 

£~k,  p, 2%k Jit,  for ±arge k, 

1 ^ [B.J      \ 
V 1-1    i ' lim -£-s -  » o. 

n        uk 

ik-m 
Now E( |y P) < k.a   L E( |x Pj, so that 

J=ik-k+l    J 

/ -a •*                  \ l/a         / n        \ 1 /a 

. \ il± . <r  i <m  —Li_i i  
s 

11m * =-* s < lim  —*-* ' • r4- " 0. t ,        ~* s t , n nk n n nk 

Dy (1U) and (8), if k is large, 

THEOREM k.    If x , x^,   ...   is a stationary m-dependent sequence 

wich zero means, then (11) holds. 

For in that case, (12) holds, sud,  since the variances are 

bounded, (8) and (9) are established as above. (10) holds, Bince, for 

each k > 2m, the sequence y., y2, ... is stationary and independent. 
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